2012-08-07
http://abloz.com
hadoop自带一个wordcount的示例代码,用于计算单词个数。我将其单独移出来,测试成功。源码如下:
package org.apache.hadoop.examples;
import java.io.IOException;
import java.util.StringTokenizer;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;
public class WordCount {
public static class TokenizerMapper
extends Mapper{
private final static IntWritable one = new IntWritable(1);
private Text word = new Text();
public void map(Object key, Text value, Context context
) throws IOException, InterruptedException {
StringTokenizer itr = new StringTokenizer(value.toString());
while (itr.hasMoreTokens()) {
word = new Text(itr.nextToken()); //to unitest,should be new Text word.set(itr.nextToken())
context.write(word, new IntWritable(1));
}
}
}
public static class IntSumReducer
extends Reducer {
private IntWritable result = new IntWritable();
public void reduce(Text key, Iterable values,
Context context
) throws IOException, InterruptedException {
int sum = 0;
for (IntWritable val : values) {
sum += val.get();
}
result.set(sum);
context.write(key, result);
}
}
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();
if (otherArgs.length != 2) {
System.err.println("Usage: wordcount ");
System.exit(2);
}
Job job = new Job(conf, "word count");
job.setJarByClass(WordCount.class);
job.setMapperClass(TokenizerMapper.class);
job.setCombinerClass(IntSumReducer.class);
job.setReducerClass(IntSumReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
FileInputFormat.addInputPath(job, new Path(otherArgs[0]));
FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}
现在我想对其进行单元测试。一种方式,是job执行完了后,读取输出目录中的文件,确认计数是否正确。但这样的情况如果失败,也不知道是哪里失败。我们需要对map和reduce单独进行测试。 tomwhite的书《hadoop权威指南》有提到如何用Mockito进行单元测试,我们依照原书对温度的单元测试来对wordcount进行单元测试。(原书第二版的示例已经过时,可以参考英文版第三版或我的程序)。
package org.apache.hadoop.examples;
/* author zhouhh
* date:2012.8.7
*/
import static org.mockito.Mockito.*;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;
import org.apache.hadoop.io.*;
import org.junit.*;
public class WordCountTest {
@Test
public void testWordCountMap() throws IOException, InterruptedException
{
WordCount w = new WordCount();
WordCount.TokenizerMapper mapper = new WordCount.TokenizerMapper();
Text value = new Text("a b c b a a");
@SuppressWarnings("unchecked")
WordCount.TokenizerMapper.Context context = mock(WordCount.TokenizerMapper.Context.class);
mapper.map(null, value, context);
verify(context,times(3)).write(new Text("a"), new IntWritable(1));
verify(context).write(new Text("c"), new IntWritable(1));
//verify(context).write(new Text("cc"), new IntWritable(1));
}
@Test
public void testWordCountReduce() throws IOException, InterruptedException
{
WordCount.IntSumReducer reducer = new WordCount.IntSumReducer();
WordCount.IntSumReducer.Context context = mock(WordCount.IntSumReducer.Context.class);
Text key = new Text("a");
List values = new ArrayList();
values.add(new IntWritable(1));
values.add(new IntWritable(1));
reducer.reduce(key, values, context);
verify(context).write(new Text("a"), new IntWritable(2));
}
public static void main(String[] args) {
// try {
// WordCountTest t = new WordCountTest();
//
// //t.testWordCountMap();
// t.testWordCountReduce();
// } catch (IOException e) {
// // TODO Auto-generated catch block
// e.printStackTrace();
// } catch (InterruptedException e) {
// // TODO Auto-generated catch block
// e.printStackTrace();
// }
}
}
verify(context)只检查一次的写,如果多次写,需用verify(contex,times(n))检查,否则会失败。
执行时在测试文件上点run as JUnit Test,会得到测试结果是否通过。 本示例程序在hadoop1.0.3环境中测试通过。Mockito也在hadoop的lib中自带,打包在mockito-all-1.8.5.jar
参考: http://bobflagg.com/blog/unit-testing-wordcount-mapreduce-example/ http://blog.pfa-labs.com/2010/01/unit-testing-hadoop-wordcount-example.html
如非注明转载, 均为原创. 本站遵循知识共享CC协议,转载请注明来源
FEATURED TAGS
css
vc6
http
automake
linux
make
makefile
voip
乱码
awk
flash
vista
vi
vim
javascript
pietty
putty
ssh
posix
subversion
svn
windows
删除
编译
多线程
wxwidgets
ie
ubuntu
开源
c
python
bash
备份
性能
scp
汉字
log
ruby
中文
bug
msn
nginx
php
shell
wordpress
mqueue
android
eclipse
java
mac
ios
html5
js
mysql
protobuf
apache
hadoop
install
iocp
twisted
centos
mapreduce
hbase
thrift
tutorial
hive
erlang
lucene
hdfs
sqoop
utf8
filter
草原
yarn
ganglia
恢复
scrapy
django
fsimage
flume
tail
flume-ng
mining
scala
go
kafka
gradle
cassandra
baas
spring
postgres
maven
mybatis
mongodb
https
nodejs
镜像
心理学
机器学习
Keras
theano
anaconda
docker
spark
akka-http
json
群论
区块链
加密
抽象代数
离散对数
同余
欧拉函数
扩展欧几里德算法
ES6
node-inspect
debug
win10
vscode
挖矿