用python模拟hadoop的map reduce过程

abloz 2012-06-25
2012-06-25

用python简单模拟hadoop的map reduce过程,便于对hadoop工作机制进行理解。

简单来说,map reduce过程是:
给出一个(key,value)的列表list1,分析完后得到另一个想要的(key,value)列表
list1(k1,v1)->map ->list2(k2,v2)->sort,combine,shuffle->list3(k3,list(v3))->reduce-> list4(k4,v4)

在此用python代码模拟整个过程,但因为没有分布式,省去combine和shuffle过程。实现字数统计功能。
程序可以在没有hadoop的python环境中执行,包含如下几个文件:
mymapred.py mymap.py mysort.py myreduce.py test.txt

1.主程序:

[zhouhh@Hadoop48 hadoop-1.0.3]$ cat mymapred.py
#!/bin/env python
# author zhouhh
# http://abloz.com
# date:2012.6.25

#$ cat test.txt
#a b c d
#a b c d
#aa bb cc dd
#ee ff gg hh
#foo foo quux labs foo bar quux

import sys

filename = 'test.txt'

if len(sys.argv) == 2:
    filename= sys.argv[1]


lines = open(filename,'r').readlines()
for line in lines:
    print line.strip()

2.map程序

[zhouhh@Hadoop48 hadoop-1.0.3]$ cat mymap.py
#!/bin/env python
# author zhouhh
# http://abloz.com
# date:2012.6.25
import sys
def mapword(w):
    print "%st%d"%(w,1)
for line in sys.stdin:
    line = line.strip()

    words = line.split()
    m = map(mapword,words)

3.排序

[zhouhh@Hadoop48 hadoop-1.0.3]$ cat mysort.py
#!/bin/env python
# author zhouhh
# http://abloz.com
# date:2012.6.25

import sys
def mapword(w):
    print "%st%d"%(w,1)
m = []
for line in sys.stdin:
    line = line.strip()

    word,count = line.split('t')
    m.append((word,count))
m = sorted(m)
for i in m:
    print "%st%s"%i

4.reduce

[zhouhh@Hadoop48 hadoop-1.0.3]$ cat myreduce.py
#!/usr/bin/env python
# author zhouhh
# http://abloz.com
# date:2012.6.25
import sys

current_word = None
current_count = 0
word = None

for line in sys.stdin:
    line = line.strip()

    word, count = line.split('t', 1)

    try:
        count = int(count)
    except ValueError:
        continue

    if current_word == word:
        current_count += count
    else:
        if current_word:
            print '%st%s' % (current_word, current_count)
        current_count = count
        current_word = word

if current_word == word:
    print '%st%s' % (current_word, current_count)

5.测试文件,可以自己指定。

[zhouhh@Hadoop48 hadoop-1.0.3]$ ./mymapred.py test.txt<br></br>a b c d<br></br>a b c d<br></br>aa bb cc dd<br></br>ee ff gg hh<br></br>foo foo quux labs foo bar quux

6.执行:

[zhouhh@Hadoop48 hadoop-1.0.3]$ ./mymapred.py test.txt | ./mymap.py | ./mysort.py | ./myreduce.py<br></br>a       2<br></br>aa      1<br></br>b       2<br></br>bar     1<br></br>bb      1<br></br>c       2<br></br>cc      1<br></br>d       2<br></br>dd      1<br></br>ee      1<br></br>ff      1<br></br>foo     3<br></br>gg      1<br></br>hh      1<br></br>labs    1<br></br>quux    2

7.分步执行:

[zhouhh@Hadoop48 hadoop-1.0.3]$ ./mymapred.py test.txt<br></br>a b c d<br></br>a b c d<br></br>aa bb cc dd<br></br>ee ff gg hh<br></br>foo foo quux labs foo bar quux

执行map

[zhouhh@Hadoop48 hadoop-1.0.3]$ ./mymapred.py test.txt | ./mymap.py<br></br>a       1<br></br>b       1<br></br>c       1<br></br>d       1<br></br>a       1<br></br>b       1<br></br>c       1<br></br>d       1<br></br>aa      1<br></br>bb      1<br></br>cc      1<br></br>dd      1<br></br>ee      1<br></br>ff      1<br></br>gg      1<br></br>hh      1<br></br>foo     1<br></br>foo     1<br></br>quux    1<br></br>labs    1<br></br>foo     1<br></br>bar     1<br></br>quux    1

执行排序

[zhouhh@Hadoop48 hadoop-1.0.3]$ ./mymapred.py test.txt | ./mymap.py | ./mysort.py<br></br>a       1<br></br>a       1<br></br>aa      1<br></br>b       1<br></br>b       1<br></br>bar     1<br></br>bb      1<br></br>c       1<br></br>c       1<br></br>cc      1<br></br>d       1<br></br>d       1<br></br>dd      1<br></br>ee      1<br></br>ff      1<br></br>foo     1<br></br>foo     1<br></br>foo     1<br></br>gg      1<br></br>hh      1<br></br>labs    1<br></br>quux    1<br></br>quux    1

最后执行reduce

[zhouhh@Hadoop48 hadoop-1.0.3]$ ./mymapred.py test.txt ./mymap.py ./mysort.py ./myreduce.py

如非注明转载, 均为原创. 本站遵循知识共享CC协议,转载请注明来源